CamoEvolve 1.1 is Here

CamoEvolve 1.1 has just been uploaded to the main site. Since I haven’t actually discussed the purpose of CamoEvolve here before I’ll cover both the changes in 1.1 and also the basic idea of the program.

CamoEvolve is an evolutionary simulator designed to run in a small window, making it suitable for tablets and phones (although it continues not to work on iOS touch-enabled devices for reasons that are unclear to me). In it there are objects that have a color, a shape, and a size. Some of these objects are background objects and some are critters hiding from you. The background objects are all generated from the same template and so they tend to be similar in color, shape, and size. The critters maintain there own gene lines and inherit their color, shape, and size (with mutations) from the critters who survive.

Your task is to identify the critters and kill them by clicking on them. For a real-world biological parallel imagine being a bird trying to find camouflaged insects amongst rocks and twigs. Like this hypothetical bird who grabs a stick and has to spit it out you will suffer a penalty for clicking on the wrong thing and will be temporarily unable to kill critters.

A full help file is available and so I want to talk here a little bit about why I wrote CamoEvolve, what I’ve added in Version 1.1, and what you might do with the program.

The aim of CamoEvolve is to model natural selection in a manner that is very basic (no frills to confuse anyone), game-like, easy to interpret, and usable on almost any device. It’s meant to be an easy-to-use teaching tool where students can see natural selection first-hand. I attempted to accomplish each of these goals as follows:

  1. Basic: All objects in the game world have the same properties, of which there are only three, and the only possible actions are to click on things (killing them if they are critters). Critters can’t do anything at all. They live or die based entirely on the player’s actions and the inherent time limit the player is working against.
  2. Game-like: This is the part I think works best. It can be genuinely hard to find the critters (although one gets much, much better with practice). Instead of telling students to try and pretend to select for certain traits you are actually trying to do something that is genuinely challenging, and there’s a fairly harsh scoring system to keep you on your toes.
  3. Easy to interpret: You know when you start having trouble finding critters. You can also see all the elements in the game.
  4. Usable on almost any device: While many of my simulators have a graphics area and a control area CamoEvolve is deliberately built around a single area that is graphics and controls and is made so simple that it can be played on pretty much any reasonable screen size. I was specifically targeting phones here since all my students seem to have them and it’s much easier to say, “Take out your phone,” than to march everyone to a computer lab. However, as noted, there are some crippling issues on iPhones and iPads.

Changes

So what did I change? Well, I ran across two issues in CamoEvolve 1.0. The first was that rendering all of the objects and moving them steadily down the screen took more processing power than many phones seemed to be able to spare. Given my phone-compatibility goal that wasn’t very good and so the first change is that the scrolling-background mode is only one option, and not the default one. Instead, the default mode presents a screen of objects for a set time and then switches to a new scene. To accommodate this change I’ve tweaked the “lockout time” used in this mode, so you may notice that on the same screen the amount of time you are “jammed up” after a mis-click varies between modes. Also, you cannot get locked-out right after the scene changes. In my early testing I kept clicking on a critter as the scene changed meaning that I mis-clicked, got locked-out, and then couldn’t click anything. Now there is a small grace period as the scene changes. Also, of course, critters have a win condition where they are counted as surviving if they live to the scene change, rather than if they make it past the bottom of the screen.

This seems to have reduced the processor burden sufficiently, and this mode seems to work well on phones.

The second change is a simple one. In early usage students were sometimes unclear as to what was going on because it was easy to lose sight of the critters very rapidly as selection pressure made them better camouflaged. There is now a no-background mode to allow you to see how killing off some critters changes the gene pool.

To implement these mode options there is a new button on the main screen, Settings, that allows you to access these options.

What would you do with CamoEvolve?

Simply playing CamoEvolve demonstrates natural selection. A short explanation of how it works (critters that live have children like, but not identical to, them) seems enough to get students off on the right foot and then being able to play around with the game makes the concept clearer.

CamoEvolve also demonstrates genetic drift. If a player stops playing but lets the game run the critters become bizarre and mismatched. Since the critters are asexual each gene-line develops in its own way, and this way is random without a selective agent. I’ve had students switch between playing and not several times to see how a selective pressure steers a random process.

Artificial selection and natural selection are closely tied conceptually. The no-background mode makes it much easier to practice artificial selection. I generally set a random target for the students (red triangles is my go-to, unless someone actually starts with anything like that) and have them compete to get there first.